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a b s t r a c t

A data base compiling a large number of results from direct numerical simulations and physical experi-
ments is used to explore the properties of shear and normal Reynolds stresses very close to the wall of
turbulent channel/pipe flows and boundary layers. Three types of scaling are mainly investigated, classi-
cal inner, standard mixed, and pure outer scaling. The study focuses on the wall behavior, the location
and the value of the peak Reynolds shear stress and the three normal stresses. A primary observation
is that all of these parameters show a significant Kármán number dependence. None of the scalings inves-
tigated works in an equal manner for all parameters. It is found that the respective first-order Taylor ser-
ies expansion satisfactorily represents each stress only in a surprisingly thin layer very close to the wall.
In some cases, a newly introduced scaling based on u3=2

s u1=2
e offers a remedy.

� 2009 Elsevier Inc. All rights reserved.
1. Motivation

The near-wall region of a turbulent flow is of special importance
for technical applications because the main part of turbulent en-
ergy is produced there. Heat and momentum transport, chemical
reactions and the viscous drag of a smooth body are strongly influ-
enced by the turbulent motion nearest to the wall. However,
numerical simulations used widely in industrial practice insuffi-
ciently resolve these near-wall flow phenomena. This is mainly
caused by strong flow inhomogenity and directionality close to
the wall, which are at best incompletely represented by current
turbulence models. At present time, there is an increasing interest
in coherent structures affecting near-wall turbulence. Recent
experiments (e.g., Adrian, 2007; Hutchins and Marusic, 2007) and
theoretical work (e.g., Morrison, 2007; Panton, 2007) show that
turbulence structures scaling with different length scales interact
in the vicinity of the wall.

Crucial for scaling Reynolds stresses close to the wall is the
understanding that wall-parallel u;w and wall-normal v compo-
nents are affected differently by the solid surface (Morrison et al.,
2004). While the former are subjected to the no-slip condition,
the latter is diminished by the impermeability constraint. These ef-
fects persist even at very high Reynolds numbers, and lead to an
entirely different behavior of the fluctuating components. More-
over, as Morrison et al. (2004) have noted, the influence of large
scales increase with increasing Reynolds number and with
ll rights reserved.

e (M.H. Buschmann).
decreasing distance from the wall. In a recent paper, Morrison
(2007) identified the local-equilibrium idea—leading to the classi-
cal logarithmic law—as a ‘no-interaction’ condition. In reality, the
large eddies near the surface can be understood as a quasi-inviscid,
low-frequency modulation of the shear stress-bearing motion. There-
fore, one may argue that the failure of classical scaling results from
neglecting the interaction of near-wall modes that scale on wall-
variables with global outer modes scaling on channel height or
boundary layer thickness. Jiménez and Hoyas (2008) showed that
the intensities of these outer structures do not scale with us and
are therefore responsible for the failure of classical scaling in the
outer region. All of these arguments make plausible why scaling
of near-wall stresses based purely on inner variables seems to be
invalid (Buschmann and Gad-el-Hak, 2009a).

Despite the impressive amount of data that was collected in the
last 50–60 years, the understanding and especially the modelling
of near-wall turbulence make only slow progress. The determina-
tion of many flow parameters is difficult or even impossible. The
application of invasive experimental techniques (pitot probe, hot-
wire, etc.) is problematic due to the interaction of the probes with
the wall and their integrating behavior. Results obtained with non-
invasive experimental techniques (LD, PIV, etc.) are rare and also
do not always provide consistent pictures. Direct numerical simu-
lations (DNS) is a remedy but thus far has been carried out only for
relatively low Reynolds numbers and simple geometries. However,
recent physical experiments confirm again and again the existence
of large and very large structures within the flow having length
scales much larger than the integral length scales of the flow or
the geometrical dimensions of the flow facility (pipe diameter,
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Nomenclature

ai; bi; ci;di coefficients of Taylor series expansions
u;v ;w velocity components
ue velocity at the outer edge of TBL or at channel/pipe cen-

ter
us wall skin-friction velocity
Reh Reynolds number based on momentum thickness
Reb bulk Reynolds number
yþ normalized wall-coordinate
a scaling power
d boundary layer thickness
dþ Kármán number
j Kármán constant of classical logarithmic law

Subscript
1 infinity
u;v ;w;uv with respect to a certain stress component
p peak

Superscript
+ classical scaling
� outer scaling
sc scaling
# standard mixed scaling
+# alternative mixed scaling
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channel width, etc.). The arduousness following for DNS-calcula-
tions is the so-called supergrid problem resulting in too small calcu-
lation domains that do not cover all relevant energy-containing
scales. Taking together it turns out that the derivation of a consis-
tent picture of wall turbulences is overshadowed by several tech-
nical problems.

To further complicate the situation, it seems that confined
(pipes, channels) and semi-confined flows (boundary layers, wall
jets) behave differently even very close to the wall. Here we are
interested basically in the separation of physical mechanisms hav-
ing well distinguished orders of magnitude. In our case, these are
the actions of outer scales (top-down effects) and the actions of
inner scales (bottom-up effects). Due to the different nature of
the flow at the centerline of a channel or pipe flow (only turbu-
lent) and that at the outer edge of a turbulent boundary layer
(turbulent and intermittent), these effects are different for
confined and semi-confined flow. Additionally there must be a
serious difference of hv2i between cannel and zero-pressure-
gradient turbulent boundary layers because the v-fluctuation is
strongly connected with pressure.1 Accepting the influence of out-
er structures on the near-wall behavior of wall-bounded flows gives
automatically arguments for the difference between channel and
pipe flows. The w-fluctuation in a channel is not directly affected
by the wall at any wall-normal position. This is different for pipe
flow where at the centerline the difference between wall-normal
and cross-flow fluctuation disappears and the influence of the pipe-
wall should be the same on v- and w-fluctuations. This changes
when approaching the pipewall.

In this paper, we address the question whether there are ranges
in the Reynolds stresses close to the wall that show universal
behavior in the sense that they scale with one single length and
one single velocity scale. For that purpose, classical inner scaling,
standard mixed scaling proposed by DeGraaff and Eaton (2000)
and pure outer scaling are studied. Two clearly distinguished fea-
tures of the stresses, the sublayer behavior and the peak values
and positions, are investigated. Similar analysis were undertaken
by Sreenivasan (1989), Antonia and Kim (1994), Fernholz and Fin-
ley (1996), and others. However, either only a very small number
of data was included or several uncertainties following from exper-
iments handicapped their results. To overcome such difficulties, a
large DNS-data base for channel flows (CH), pipe flow (PF) and
zero-pressure-gradient turbulent boundary layers (ZPG TBL) is
compiled. This data base is complemented by several high-quality
TBL-experiments.
1 The authors are grateful to Prof. Yoshijuki Tsuji from Nagoya University for
pointing this out to us.
2. Data base

As pointed out by many experimenters, the measurement of
Reynolds stress close to the wall is complicated and is susceptible
to significant experimental errors, which makes it difficult to
investigate scaling effects using physical experiments. Therefore,
we compile here a large DNS data base covering Kármán number
ranges for pipe and channel flows between 64 and 2006 and for
ZPG TBLs between 150 and 1016, as shown in Table 1. Special care
was taken when selecting data for very low Kármán numbers to
exclude any results that might be affected by insufficiently small
calculation domain. This ensures that all relevant scales for the tur-
bulence shear stress are captured. Note that the lowest Kármán
number considered here is 64 (Reynolds number based on bulk
velocity Reb � 1844), which is very close to relaminarization. Reli-
able conclusions for fully-developed turbulent channel flow might
therefore only be drawn down to dþ ¼ 200 ðReb � 6000Þ. Therefore
we will focus on the Kármán number range above 200.

The DNS-data are supplemented by some carfully selected
experimental data sets for TBL. The advantage of these data is that
they have much higher Reynolds numbers. Their disadvantage is
that in some cases they tend to cluster rather by facility than by
any physical effect. Some of the high-quality experimental data
(McKeon et al., 2004; Zanoun, 2003) offer only mean-velocity pro-
files. From these data the Reynolds shear stress is predicted
employing the mean-momentum equation. With the exception of
the ASL data by Priyadarshana and Klewicki (2004), all experimen-
tal data are taken over smooth surface. Table 1 gives a comprehen-
sive overview of all data investigated in the present study.

3. Organization of results

The results of the study are compiled in sets of diagrams for
each stress. All data use the same color code given in Table 1 for
the symbols. Additionally, the diagrams show certain approxima-
tion functions. The fully drawn parts of these curves indicate the
region where they were calculated from the data (region of valid-
ity). Dashed parts indicate extrapolated regions. Special types of
dependencies on the Kármán number (constancy, linear or power
law behavior) are documented in tables in Section 5. It is our be-
lieve that some of the parameters investigated behave asymptoti-
cally, reaching constant values only for Re!1. However, due to
its diminutiveness this asymptotic behavior may not be detectable
for finite Reynolds numbers. Therefore, we call all ‘constant’ values
reached nearly constant. Each diagram (with exception of Fig. 1)
shows a bold vertical line at dþ ¼ 200 indicating the border for
fully-developed turbulence, as discussed in the previous section. A
so-called 3%-border is used to discuss the validity of the first-order



Table 1
Compiled data. CH: channel flow; PF: pipe flow; TBL: turbulent boundary layer; DNS: direct numerical simulations; EXP: experiment; ASL: atmospheric surface layer over rough
surface; CMM: calculated employing the mean-momentum balance.

Authors Kármán number Type Symbol

Abe et al. (2004) 180, 365, 640, 1020 CH DNS
Hoyas and Jiménez (2006) 186, 547, 934, 2006 CH DNS
Hu et al. (2006) 90, 130, 180, 362, 716, 1451 CH DNS
Iwamoto et al. (2002) 110, 150, 298, 395, 642 CH DNS
Laadhari (2002) 120, 160, 180, 235, 589, 1000, 1006, 1461 CH DNS
Moser et al. (1999) 178, 392, 587 CH DNS
Tsukahara et al. (2005) 64, 70, 80, 110, 150 CH DNS
Khujadze and Oberlack (2007) 289, 306, 769, 815, 860, 966, 1016 TBL DNS
Spalart (1988) 150, 325, 653 TBL DNS
Wu and Moin (2008) 181, 1143 PF DNS
Bruns et al. (1992) 970, 1694, 2411, 5582 TBL EXP
Charlier and Stanislas (2005) 2536, 3987, 5152, 7023 TBL EXP
DeGraaff and Eaton (2000) 541, 992, 4336, 10,077 TBL EXP
Ligrani and Bradshaw (1987) 932 TBL EXP
McKeon et al. (2004) ð1:8� 103

6 dþ 6 5:3� 105Þ PF CMM

Nagano et al. (1992) 407, 507, 586, 656 TBL EXP
Nickels et al. (2007) 7300 TBL EXP
Nockemann et al. (1994) 7242, 7577, 13,414, 15,277, 19,050, 20,407 TBL EXP
Osaka et al. (1998) 355, 480, 776, 1042, 1488, 1697, 1988 TBL EXP
Priyadarshana and Klewicki (2004) 388, 966, 1493 TBL EXP
Priyadarshana and Klewicki (2004) 8:9� 105, 2� 106, 1:01� 106 ASL EXP

Purtell et al. (1981) 311, 870 TBL EXP
Tsuji et al. (2007) ð2:3� 103

6 dþ 6 7:2� 103Þ TBL EXP

Ueda and Hinze (1975) 502, 1314 TBL EXP
Zanoun (2003) ð1:2� 103

6 dþ 6 4:8� 103Þ CH CMM
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Taylor series expansion of the stresses. This term is explained in
detail at the beginning of Reynolds shear stress section.

The majority of the diagrams employ a semi-logarithmic repre-
sentation, while few are presented on a log–log scale. The advan-
tage of the former representation is that it readily shows
whether the Kármán number dependency observed at low dþ-val-
ues dies out when dþ approaches infinity. Additionally, the nonlin-
ear representation allows as a first check if a certain Kármán
number dependency behaves logarithmically or follows a power
law, or if it eventually approaches either relation as dþ ! 1.
4. Classical and mixed scaling

The classical idea of scaling wall turbulence promises that any
turbulent quantity scaled with inner variables (us and m=us) should
collapse in a single curve at least in the vicinity of the wall, inde-
pendently of Reynolds number. That this idea does not work was
shown several times especially for the streamwise normal stress.
Actually, it was this finding that inspired DeGraaff and Eaton
(2000) to employ the so-called mixed scaling.

Classical scaling is essentially near-wall scaling. Any failure of
this scaling must therefore be caused by the interaction of near-
wall modes with outer modes (Hoyas and Jiménez, 2005; Jiménez
and Hoyas, 2008). That near-wall scaling of Reynolds stresses in-
deed fails was already shown earlier by Townsend (1956, 1976).
The outer modes overreach the whole boundary layer (Schlatter
et al., 2009) or channel/pipe flow and have much larger length
scales than the inner. Therefore, turbulent quantities of wall-
bounded flows depend on physical phenomena characterized by
well distiguished orders of magnitude. Thus, the effect of different
physical mechanisms acting on the turbulent statistics have to be
represented by the similarity analysis (see, e.g., Bertola and Cafaro,
2005). Mixed scaling that allows a scaling based on both the char-
acteristic inner (us and m=us) and the characteristic outer (ue and d)
scales offers a remedy to cover these effects. The ratio between in-
ner and outer length scales, the Kármán number dþ ¼ dus=m, is
therefore the proper similarity number on which near-wall behav-
ior, peak value and peak position should depend. This is different
from many other approaches where these parameters are pre-
sented as depending on Reh. This Reynolds number is built with
the momentum thickness and the outer velocity, which makes it
entirely an outer parameter. Consistently similar arguments were
used by Buschmann and Gad-el-Hak (2003, 2007) with respect to
the mean-velocity profile and led to a generalized logarithmic
law covering higher-order Reynolds number effects.

As any other alternative scaling, mixed scaling is motivated by
the anticipation of correlating the data in a Reynolds-number-
independent way. DeGraaff and Eaton (2000) found that the peak
value of the streamwise stress changes proportional to Re2

h , which
led them to investigate hu2iþ � ðus=ueÞ (or equvalently hu2i=usue).
This step is basically a shift of an explicitly observed Reynolds
number dependency into the scaling itself, which implies that both
the scaling of the stress and some power of the square root of the
friction factor can be expanded to first order in the same function
of the Reynolds number. A physical explanation for the success of
standard mixed scaling was already given by Alfredsson and
Johansson (1984). They discovered that the governing time scale
of the near-wall region of a channel flow is a mixture of outer
and inner scales, and interpreted this as a sign of the interaction
of outer and near-wall flows. The mixed time scale employed by
Alfredsson et al. (1988) was

tm ¼
ðm=usÞd

usue

� �1=2

ð1Þ

which already shows the mixed velocity scale used later by DeGra-
aff and Eaton (2000). Indeed, standard mixed scaling reaches back
into the early seventies when Rao et al. (1971) discovered the im-
proved scaling of burst rates per unit span in a turbulent boundary
layer when the standard mixed velocity scale ðusueÞ1=2 is employed.
However, this particular scale may not be universal, as Morrison
et al. (2004) showed when they tried to scale the superpipe data.

Sreenivasan (1989), Fernholz and Finley (1996), among others,
showed that peak values and positions of the stresses depend on



2 Note that this does not mean that process variables can not be defined as
differences, for example ue—ub , which eventually appear as factors in similarity
numbers.
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the Reynolds number. It seems, therefore, reasonable to apply
mixed scaling in a more general form to all stresses

huvisc ¼ huvi
u2�a

s ua
e

; hu2isc ¼ hu2i
u2�a

s ua
e

;

hv2isc ¼ hv2i
u2�a

s ua
e

; hw2isc ¼ hw2i
u2�a

s ua
e

ð2Þ

The superscript sc denotes the proposed mixed scaling, and the
exponent a can take any value between 0 and 2. Classical inner scal-
ing (superscript +) based on u2

s is obtained for a ¼ 0. Pure outer scal-
ing (superscript �) follows for a ¼ 2. For the streamwise Reynolds
stress, a ¼ 1 and the standard mixed scaling (superscript #) was
anticipated by DeGraaff and Eaton (2000) and later successfully em-
ployed by Panton (2007). The streamwise stress scales then with
usue, which gives the same weight to both inner and outer velocity.
Here we introduce a new specification of mixed scaling with a ¼ 0:5
and viceversa for ue. Compared with standard mixed scaling, the
influence of outer velocity is weaker. In the following, this type of
scaling is called ‘‘alternative mixed scaling”. In any case, the uncer-
tainty caused by experimental errors in us will increase with
decreasing a. For DNS-results, uncertainty and error propagation
do not play a role because both us and ue should have the same
diminutive numerical error.

Based on Taylor series expansion at y ¼ 0, Monin and Yaglom
(1971) derived relations for the near-wall behavior of shear and
normal stresses scaled classically. Here we rewrite these series in
a more general form for mixed scaling with arbitrary power a

� huvisc ¼ � huvi
u2�a

s ua
e
¼
Xn

i¼3

aiðdþÞyþi us

ue

� �a

;

hu2isc ¼ hu2i
u2�a

s ua
e

� � ¼Xn

i¼2

biðdþÞyþi us

ue

� �a

;

hv2isc ¼ hv2i
u2�a

s ua
e

� � ¼Xn

i¼4

ciðdþÞyþi us

ue

� �a

;

hw2isc ¼ hw2i
u2�a

s ua
e

� � ¼Xn

i¼2

ciðdþÞyþi us

ue

� �a

ð3Þ

That the parameters occurring in (3) are not necessarily universal
was already stated by Gad-el-Hak and Bandyopadhyay (1994). A
Reynolds number dependency was confirmed by Antonia and Kim
(1994), who investigated DNS channel flow data. Bradshaw and
Huang (1995), employing the no-slip condition, the no-permeability
condition, the continuity equation and the fluctuating part of the
momentum equation at y ¼ 0, give the first parameters of (3) writ-
ten for classical scaling as

huviþ ¼ 1
2

@uþ

@yþ
@p0þ

@yþ

� 	
yþ3 þ � � � ;

hu2iþ ¼ @uþ

@yþ

� �2
* +

yþ2 þ @uþ

@yþ
@p0þ

@yþ

� 	
yþ3 þ � � � ;

hv2iþ ¼ 1
4

@p0þ

@yþ

� �2
* +

yþ4 þ 1
6

@p0þ

@yþ
@2p0þ

@yþ2

* +
yþ5 þ � � � ;

hw2iþ ¼ @wþ

@yþ

� �2
* +

yþ2 þ @wþ

@yþ
@p0þ

@yþ

� 	
yþ3 þ � � � ð4Þ

Looking at the coefficients of the first-order terms of (4) tells us that
longitudinal and cross-flow stress are both different from wall-nor-
mal stress in the sense that the last depends, to first order only, on
the wall-normal derivative of pressure fluctuation. In his textbook,
Davidson (2004) writes that an eddy (vortex blob) in the core of the
flow induces a velocity [sic pressure] field which pervades all of the
fluid, including the near-wall region. Due to the differences of the out-
er regions of ZPG TBL and CH-flows, one may therefore argue that
the non-local pressure-related influence of the outer eddies on
the turbulence closest to the wall should be geometry dependent.
According to (4) this should be visible to first order in the v2-stress
and to second order in the u2- and w2-stress. Therefore, the differ-
ence between ZPG TBL and CH-flow should be most noticeable in
the distributions of the wall-normal Reynolds stress. To obtain the
first parameters of each expansion in (3), we write

�huvisc

yþ3 ¼ asc
3 ðd

þÞ;
ffiffiffiffiffiffiffiffiffiffiffiffi
hu2isc

p
yþ

¼ bsc
1 ðd

þÞ;
ffiffiffiffiffiffiffiffiffiffiffiffi
hv2isc

p
yþ2 ¼ csc

2 ðd
þÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hw2isc

p
yþ

¼ dsc
1 ðd

þÞ ð5Þ

All scalings proposed above are strictly based on Buckingham’s
P-theorem from 1914 (see, for example, Gersten and Herwig,
1992). This theorem states that any physical process depending
on n dimensionally assigned parameters aj having m independent
dimensions could be represented by a relation of n—m non-dimen-
sional similarity numbers Pi:

FðP1;P2; . . . ;Pn�mÞ ¼ 0 ð6Þ

In general, all similarity numbers have the form of products of pow-
ers of the parameters (process variables) ai:

Pi ¼
Yn

i¼1

a
cj

j ð7Þ

where the power cj can be any number between �1 and þ1, as
long as the following constraint is satisfied

1 ¼
Yn

i¼1

½aj�cj ð8Þ

Thus, the normalization u2�a
s ua

e proposed with (2) cannot be inter-
preted as the geometrical mean of two relevant velocity scales. It
is merely a product of powers of these two scales. Even more, Buck-
ingham’s P-theorem in general forbids any scaling such as arithme-
tic or harmonic mean, or any other combination of scales defined as
process variables that has a nonmultiplicative structure.2 However,
there is a down side to the Buckingham’s P-theorem, which Brad-
shaw and Huang (1995) call with respect to the mixing length theory
an ‘interesting philosophical point’, namely if a theory is dimension-
ally correct and leads to a result which could be obtained by dimensional
analysis alone, the theory need not be physically correct. This is espe-
cially important with respect to the use of ue in (2) and the following
equations. While Morrison (2009) in general rejects ue as a scaling
option, several other approaches employ this parameter successfully
(e.g., Panton, 2007). Herein, we will follow the current view of the
majority of researchers.
4.1. Reynolds shear stress huvi

Gersten and Herwig (1992) compiled several experimental data
of aþ3 ranging from 4� 10�4 to 7� 10�4 and reported an averaged
value of 4:1� 10�4. A similar value (4� 10�4) was given by Sreen-



Fig. 1. Comparison of scaling types investigated in the vicinity of the wall. Blue: dþ ¼ 547 (Hoyas and Jiménez, 2005); red: dþ ¼ 1451 (Hu et al., 2006). Full curves: classical
scaling; dashed curves: standard mixed scaling; broken curves: outer scaling; dotted curves: alternative mixed scaling. Vertical lines indicate 3%-border. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ivasan (1989). The aþ3 values found here from CH DNS-data are
plotted in Fig. 2a and confirm the previous findings for dþK 200
but exceed them for higher Kármán numbers. The reasons for this
discrepancy are manifold. First, we inspect the truncated first-or-
der Taylor series expansion in Fig. 1. For that purpose a region
where this approximation gives an acceptable accuracy is defined
from the wall to the so-called 3%-border. Up to this yþ position
the percentage change between two consecutive huvisc values is
less than 3%. Note that DNS-data are used for this exercise where
the data points are located tightly together ð0:1 KDyþK 0:6Þ in
the near-wall region. The 3%-border is therefore quite a sensitive
parameter. Below this border the straight horizontal lines in
Fig. 1 indicate that the DNS-values are nearly perfectly represented
by the truncated Taylor series expansion (5).

For the Reynolds shear stress, the 3% border is found around
yþ � 0:5—0:7 (see Fig. 1a). The experiments mentioned by Gersten
and Herwig (1992) may not have had been so close to the wall to
give proper aþ3 -values. This is also the reason why the TBL-data
compiled in Table 1 cannot be employed for determining aþ3 . In
Fig. 2a the TBL DNS-data by Spalart (1988) and Khujadze and Ober-
lack (2007) do not fall (with exception of the Khujadze-data with
the lowest dþ) onto the curve of the CH-data. However, neither
the CH nor the TBL-data reach a aþ3 value that is Kármán-num-
ber-independent. For the CH-data the situation changes signifi-
cantly when standard mixed scaling is employed (Fig. 2b). The a#

3

values are already constant sligthly above dþ � 200. The TBL-data
may cluster around another constant value (see Table 3). Unfortu-
nately the number of TBL DNS realizations is still too low to draw a
clear conclusion. The high Reynolds number pipeflow DNS by Wu
and Moin (2008) seems to cluster with the high-Reynolds-number
TBL DNS by Khujadze and Oberlack (2007) and not with the major-
ity of the channel flow data. Pure outer scaling, depicted in Fig. 2c,
fails below dþ � 1000, but may reach a constant value above this
threshold.

Classical theory demands a constant shear stress region for
Re!1. The ratio huvi=u2

s should then become unity, at least in
the vicinity of the peak. However, the DNS-data investigated here
show that even for the case with the highest Kármán number,
dþ ¼ 2006; huviþp reaches only a value of 0.9317 (Figs. 2d and 3a).
This falls well into the range of 0.92–0.95 found by Fernholz and
Finley (1996) for a Reynolds number range of 2500 6 Reh 6

60;000 ð1000 K dþK 17;000Þ. Here we find that below dþ �
1000 the Kármán number dependence is quite strong. Based on
Barenblatt’s (1993) power law, a second-order relation for huviþp
was derived by Sreenivasan et al. (1997):

huviþp ¼ 1� ð3:1� 0:1Þ
dþð1=2Þ þ 0:93

dþð1=2Þ
ln½lnðdþÞ�

lnðdþÞ

� �
ð9Þ

Buschmann and Gad-el-Hak (2009a) developed a third-order
approximation based on their generalized logarithmic law, which
also covers the very low dþ-range,

huviþp ¼1� 1:52
1

dþ1=2 K
1
2
GþK

�1
2

G

h i
þ5:14

1
dþ
þ32:75

1
dþ3=2 K

1
2
GþK

�1
2

G

h i� �
ð10Þ

with KG ¼ 1þ 64:8=dþ. The functional structure of Eq. (10) and its
parameters do not follow from an emprical fit of huviþp -data but
rather from a higher-order approach for the mean-velocity profile
(for details see cited reference). Both relations are in perfect agree-
ment with the high-Reynolds-number pipeflow data by McKeon
et al. (2004), the pipeflow DNS by Wu and Moin (2008) and the
channel flow data by Zanoun (2003), as shown in Fig. 3a. The



Table 2
Relations for hu2iþp .

Authors Relation

Klewicki et al. (1994) hu2iþp ¼ 8:5� 10�9Re2
h þ 4:8� 10�4Reh þ 6:86

Mochizuki and Nieuwstadt (1996) huiþp ¼ 1:5� 10�5Reh þ 2:67
Valid for TBL with 200 6 Reh 6 20;920

huiþp ¼ �2:4� 10�6dþ þ 2:70

Valid for internal flow with 100 6 dþ 6 4;300
Fernholz and Finley (1996) huiþp ¼ 0:28 lg Reh þ 1:86
Metzger (2006) huiþp ¼ ð0:22� 0:29Þ lg Reh þ ð1:84� 2:02Þ
Hutchins and Marusic (2007) hu2iþp ¼ 0:965 ln dþ þ 1:036

Represents TBL-data above dþ 6 200
Present work, Fig. 4d hu2iþp ¼ 0:090ðln dþÞ2 � 0:571 ln dþ þ 7:627

Valid for internal flow with dþJ 100

Fig. 2. Reynolds shear stress huvi.
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low-Reynolds-number TBL-data seem to follow a slightly different
trend which can be described with
huviþp ¼ 1� 2:48
dþð1=2Þ ð11Þ

The standard mixed scaling shown in Fig. 2e and the outer scaling
shown in Fig. 2f do not work, which is in agreement with the clas-
sical arguments.

Fig. 2g shows the peak position of the Reynolds shear stress in
double logarithmic plot for channel flow. Invoking the local-equi-
libriums hypothesis and employing the standard log law, a simple
approximation function can be derived for internal flows from the
mean-momentum equation

yþpuv ¼ k � dþð1=2Þ; k ¼ 1=j1=2 ð12Þ

Several authors have published values for k ranging from 1.87 (Long
and Chen, 1981) to 2.0 (Sreenivasan et al., 1997) to 1.5 (Morrison
et al., 2004). The equivalent j values would be, respectively,
0.286, 0.250 and 0.444. With the exception of the last one, these
values are far from the traditional j value of 0.41, which may



Fig. 3. Peak value and position of Reynolds shear stress huvi including pipe flow data by McKeon et al. (2004), channel flow data by Zanoun (2003) and ASL and TBL-data from
Priyadarshana and Klewicki (2004).

Table 3
Wall behavior according to different scaling types. All constants and functions are given for dþJ 200 (Mon. stands for monotonic).

Scaling huvi hu2i hv2i hw2i

Classical inner Mon. increase aþ3 ðd
þÞ bþ1 ðdþÞ ¼ 0:270þ 0:020 � dþ Mon. increase cþ2 ðd

þÞ Mon. increase dþ1 ðdþÞ
Alternative mixed Mon. increase aþ#

3 ðd
þÞ bþ#

11 ¼ 0:186 Mon. increase cþ#
2 ðd

þÞ Mon. increase dþ#
1 ðd

þÞ
Standard mixed a#

31 ¼ 4:61� 10�5 b#
11 ¼ 8:49� 10�2 Mon. increase c#

2 ðd
þÞ Mon. increase d#

1 ðd
þÞ

Outer a�3ðd
þÞ b�1ðdþÞ ¼ 0:027� 1:31� 10�3 � dþ CH: dþJ 200 c�21 ¼ 5:55� 10�4

TBL: dþJ 150

c�21 ¼ 5:95� 10�5

d�11 ¼ 1:21� 10�2
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indicate low-Kármán-number effects or merely that yþpuv does not
fall into the classical logarithmic region (Antonia et al., 1992). Of
course (12) should hold only approximately for flows having suffi-
ciently high Reynolds numbers. Here we find that this is the case
above dþ � 600—1000, as shown in Fig. 2g and Fig. 3b. For lower
Kármán numbers, higher-order effects become strong and must
be considered. Consistent with Eq. (10), Buschmann and Gad-el-
Hak (2009a) give the following second-order approximation for
channel flow

yþpG ¼ 1:521dþ1=2 1þ 64:8
dþ

� �1=2

þ 8 ð13Þ

which is in reasonable agreement with the data down to the lowest
Kármán number (Fig. 2g). Fig. 3b shows an agreement with the
superpipe data by McKeon et al. (2004) at least up to
dþ � 40;000. Note that the latter data were calculated from the
mean-momentum equation. Neglecting the offset in (13) leads to
first order to an equivalent j-value of 0.432.

The low-Kármán-number effects are also visible in outer scaling
of the peak position of the Reynolds shear stress, Fig. 2h. Fig. 3c
shows again the outer scaling but includes the pipeflow data by
McKeon et al. (2004), the channel flow data by Zanoun (2003),
and the atmospheric surface layer data by Priyadarshana and
Klewicki (2004). The last confirms the trends depicted in Fig. 2g
and h for peak position and value found from low- and medium-
Reynolds-number data. However, one has to keep in mind that
these data have two significant differences to other data. First, they
are taken over rough surface, and, second, an ASL is a wall-bounded
flow developing in time and space while a TBL develops in space
alone and CH-flows are self-similar. Whether or not the slightly
concave behavior of the superpipe data is significant is unclear.
At a minimum, it seems to be noteworthy that yþpu of TBL does
not show such a behavior, as depicted in Fig. 4i.

4.2. Longitudinal Reynolds stress hu2i

The most intensive experimental investigations with respect to
the stresses have been conducted for the streamwise fluctuations.
Reason is probably that this stress can be measured more accu-
rately than any other using a single hot-wire or a two-beam LDA.
Fig. 4a–c show the coefficients bþ1 ðd

þÞ; b#
1 ðd

þÞ and b�1ðd
þÞ (Fig. 4a).

While the experimental values for bþ1 ðd
þÞ reported in the literature

are mostly constant (0.30, Monin and Yaglom, 1971; 0.36, Kim
et al., 1987; 0.39–0.40, Karlsson and Johansson, 1986; Alfredsson
et al., 1988; 0.37, Durst et al., 1995; 0.4, DeGraaff and Eaton,
2000), the data analyzed here are clearly Kármán-number-depen-
dent. Wheras the TBL DNS-results show slightly higher values than
the CH DNS-data, the experimental values are all below the
approximate curve of the channel data. However, all of them indi-
cate the same increasing non-asymptotic trend above dþ � 200. By
contrast, Fischer (1999) investigated low-Reynolds-number DNS
and experimental data and found an asymptotic behavior. His
curve for experimental data is in perfect agreement with the
very-low-Reynolds-number DNS channel flow results by Tsukaha-
ra et al. (2005). The standard mixed scaling delivers a nearly con-
stant value of b#

11 above dþ � 200. However, the TBL DNS-data
by Kuhjadze (2005) and several experimental data scatter around
this value. The ‘alternative mixed’ scaling (Fig. 4b, a ¼ 0:5) is tested
here successfully for the first time. The scatter of TBL-data found
employing standard mixed scaling is completely removed as
shown in Fig. 5a. The pipflow DNS by Wu and Moin (2008) fits very
good into the majority of data. In contrast, outer scaling (Fig. 4c)
shows a clear Kármán number dependency througout the entire
dþ range investigated.

Differently from all other stresses, the first-order Taylor series
expansion shown in Fig. 1b gives a good approximation much far-
ther away from the wall. The 3% border of the longitudinal shear
stress is found around yþ � 3—4.

From many experiments it is known, that the hu2iþ profile of
ZPG TBL and CH-flow shows a distinguished peak around
yþ � 15. However, despite the large number of investigations, the
Reynolds number dependency of this parameter remain controver-
sial. Analyzing 47 different experimental works ðReh ¼
300� 20;920; dþ � 147—7050Þ, Mochizuki and Nieuwstadt
(1996) found nearly constant peak value of 7:34 for zero-pres-
sure-gradient TBL and 7:29 for internal flows. Several other
researchers discovered stronger Reynolds number dependencies
(Table 2). None of these relations indicate an asymptotic behavior.



Fig. 4. Reynolds normal stress component hu2i.

Fig. 5. Alternative mixed scaling ða ¼ 0:5Þ for Reynolds normal stress component hu2i.
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Even the ASL data by Metzger and Klewicki (2001) confirm that the
peak value of the streamwise stress increases indefinitely when
scaled with u2

s . This finding is consistent with our own analysis
(see Fig. 4d) and goes together with the non-asymptotic behavior
of bþ1 discussed in the previous paragraph. The majority of the
TBL-data below dþ � 1000, both DNS and experiment, lies
below the CH DNS-data. This supports the idea that TBL and CH
peak values behave differently (see, e.g., Hutchins and Marusic,
2007). However, a clear conclusion cannot be drawn from the
data investigated herein. Reason is mainly the scarcity of TBL
DNS-data.

For standard mixed scaling (Fig. 4e), a nearly constant value of
hu2i#p1 for ZPG TBL seems to be reached above a Kármán number of
about 1000. The CH DNS-data show after a local peak at about
dþ � 140 a monotonic decrease and may reach a slightly higher va-
lue of hu2i#p1 as TBL above dþ � 2000. Pure outer scaling (Fig. 4f)
seems to fail at least in the dþ-region investigated here.

Considering a law of the wall-wake formulation for the mean-
velocity profile, Marusic and Kunkel (2003) concluded for standard
mixed scaling

hu2i#p1 ¼
hu2ip1
usue

¼ c1j ð14Þ

Here c1 denotes the coefficient of the logarithmic term in their hu2iþp
relation (Table 2). For j ¼ 0:38� 0:41 and c1 ¼ 0:965; hu2i#p1 ¼
0:367� 0:396, which is about 10% to 20% larger than the value of
0.321 found here (see also Table 4). Metzger (2006) analysing
measurements in ASL and laboratory data gave with 0.325 a much
closer value.

The alternative mixed scaling is successfully applied for channel
flow and pipeflow in Fig. 5b, which indicates that a constant value
of hu2iþ#

p1 is already achieved around dþ � 100. This is obviously not
the case for ZPG TBL as indicated in Fig. 5c. Despite the experimen-
tal error that may overshadow the differences between both types
of flows, the trend of the TBL-data is clearly different from that of
the CH and pipeflow data. This again indicates that direct interac-
tion between large and small scales exist in TBL, which cannot be
removed by simple superposition of scales (see, e.g., Metzger and
Klewicki, 2001). A nonlinear fit of the experimental data compiled
here gives the following approximation curve for Kármán number
above 300.

hu2iþ#
p ¼ �6:42� 10�3ðln dþÞ2 þ 0:204 ln dþ þ 0:463 ð15Þ

Fig. 4g–i show the peak position of the streamwise stress. Beyond a
weak depression around dþ � 200—600 (see Fig. 4g), this parameter
reaches, a constant value of 14.84 for the DNS CH-data and 14.25 for
all the other data compiled. DeGraaff and Eaton (2000) reported a
smaller value of 14 for TBL. In their review paper, Mochizuki and
Nieuwstadt (1996) found the following Reynolds-number-depen-
dent relations for channel flow

yþpu ¼ 0:00020dþ þ 14:6; 100 6 dþ 6 4300 ð16Þ

and for boundary layers

yþpu ¼ 0:00017Reh þ 14:4; 300 6 Reh 6 20;920 ð17Þ

Fig. 4g shows that relation (16) is in fairly good agreement with the
CH-data. The mean value of 14.9 for TBL reported by Mochizuki and
Nieuwstadt (1996) is slightly higher than the value found here. In
outer variables all data order on an exact straight line in double-
log plot, as seen in Fig. 4i. Relation (16) is nearly not visible because
it is entirely covered by the symbols and our own approximation gi-
ven in Table 5. Employing outer scaling no significant differences
between ZPG TBL and CH-data can be detected.
4.3. Wall-normal Reynolds stress hv2i

The wall-normal fluctuations are of great importance because
they provide the effective turbulence transport, one of the main
feature of turbulent wall-bounded flows (for a detailed discussion
see, e.g., Fernholz and Finley, 1996). Differently from streamwise
and cross-flow fluctuations, the wall-normal component is
strongly influenced by the impermebility of the wall. Our results
for the v fluctuations are compiled in Fig. 1c, Fig. 6 and Fig. 7. In
general, the near-wall behavior of hv2i is quite different from the
one for the streamwise stress. The peak occurs much farther away
from the wall and is much more shallow. Collecting some older
data, Gad-el-Hak and Bandyopadhyay (1994) have already con-
cluded that inner (classical) scaling does not work for hv2i across
the entire viscous region. A similar observation has been reported
by Fernholz and Finley (1996) who stated that ‘‘there is little or no
sign of similarity”. Both results are based on experiments and one
should keep in mind the experimental difficulties associated with
measuring the v-component. However, theoretical arguments on
the difference of the profiles of the two wall-parallel and the one
wall-normal fluctuations were already given by Townsend (1956,
1976) by his formulation of the attached eddy model. A detailed re-
cent discussion with that respect can be found in Jiménez and
Hoyas (2008).

The truncated first-order Taylor series expansion (Fig. 1c) repre-
sents the wall-normal stress only within a minute region very close
to the wall. The 3% border is found at yþ value between 0.1 and 0.2,
as shown in Fig. 1c. The determination of the first surviving coeffi-
cient of the truncated Taylor series expansion csc

2 is difficult. Unfor-
tunately, none of the experimental data from Table 1 comes close
enough to the wall to deliver reliable values for csc

2 and no values
are reported in the literature. An exception are the cþ2 values derived
by Antonia and Kim (1994) from CH DNS-data, which show a clear
Kármán number dependency (Fig. 6a). Investigating the DNS-data
compiled herein confirms this dependency. However, the dþ range
covered here is too small to find out if cþ2 reaches an asymptotic
state as dþ ! 1. The situation is similar for standard mixed scaling
(Fig. 6b), which makes it hopeless to look at the in-between alterna-
tive mixed scaling. Surprisingly, however, the outer scaling (6c)
with hv2i� ¼ hv2i=u2

e is doing quite a good job in the sense that a
nearly constant value of c�21 is achieved above dþ � 200. In any case,
the DNS TBL-data mainly do not fall into the curves generated by
the CH-data and may cluster around another constant value (see
Table 3). Because only DNS-data with similar high-quality are em-
ployed, this difference may well indicate the general difference be-
tween channel and boundary-layer flows.

The situation is different for the peak value of the wall-normal
Reynolds stress. Here the alternative mixed scaling works fine as
shown in Fig. 7, while pure outer scaling totally fails in approach-
ing a Kármán-number independent state (Fig. 6f). The alternative
mixed scaling (7a) works even better for the TBL-data having the
highest Reynolds numbers (Nockemann et al., 1994). Classical scal-
ing (Fig. 6d) shows a clear increase of the peak value above
dþ � 1000 follows:

hv2iþp ¼ 0:686þ 0:070 logðdþÞ ð18Þ

It should be mentioned that Priyadarshana et al. (2007) also re-
ported a very weak increase of hv2iþp for values for Reh larger than
about 1500 ðdþJ 700Þ. Unlike the streamwise stress component
shown previously in Fig. 5c, no differences between confined and
semi-confined flows can be detected for the peak value of the
wall-normal Reynolds stress, as shown in Fig. 7b.

The peak position yþpv depends strongly and non-asymptotically
on the Kármán number (Fig. 6g and h). This is in agreement with
Sreenivasan (1989):



Table 4
Peak value according to different scaling types.

Scaling huvi hu2i hv2i hw2i

Classical inner Mon. increase huviþp ðd
þÞ see Eq. (10) Mon. increase hu2iþp ðd

þÞ CH: see Table 2 Mon. increase
hv2iþp ðdþÞ see Eq. (18)

Mon. increase hw2iþp ðd
þÞ

Alternative mixed Mon. increase huviþ#
p ðdþÞ CH: dþJ 100

hu2iþ#
p1 ¼ 1:664

TBL: mon. increase see Eq. (15)

dþJ 1000

hv2iþ#
p1 ¼ 0:242

Mon. increase

hw2iþ#
p ðdþÞ

Standard mixed huvi#p ðdþÞ TBL: dþJ 1000

hu2i#p1 ¼ 0:321
hv2i#p ðdþÞ dþJ 1000

hw2i#p1 ¼ 0:093
Outer huvi�pðd

þÞ hu2i�pðdþÞ hv2i�pðdþÞ hw2i�pðdþÞ

Table 5
Peak position according to different scaling types.

Scaling huvi hu2i hv2i hw2i

Classical inner Mon. increase yþpuv ðd
þÞCH see Eq. (13) dþJ 600

CH alone
yþpu1 ¼ 14:84
CH and TBL
yþpu1 ¼ 14:25

Mon. increase
CH see Eq. (21)
TBL see Eq. (22)

dþJ 150 CH see Eq. (24)

Outer Mon. decrease gpuv ðdþÞ gpuðdþÞ ¼ 14:670=dþ CH: dþJ 200

gpv ðdþÞ ¼ 11:842=dþ0:7

TBL: dþJ 2000
gpv1 ¼ 0:227

dþJ 150

gpwðdþÞ ¼ 22:031=dþ0:908
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yþpv ¼ dþ0:75 ð19Þ

and Fernholz and Finley (1996):

yþpv ¼ 0:071� Reh ð20Þ

whos functions are likewise shown3 beside our fits in Fig. 6h. From
the data analyzed here we obtain the following relation for channel
flows

yþpv ¼ 11:842 � dþ0:300 ð21Þ

and for turbulent boundary layers

yþpv ¼ 0:227 � dþ0:973 ð22Þ

From his findings, Sreenivasan (1989) concluded ‘‘that v-fluctua-
tions are essentially an outer layer and therefore inviscid phenom-
enon”. One of the most impressing results of the present study is
the clear difference between the peak position of confined (channel)
and semi-confined (boundary layer) flows, as depicted in Fig. 6h and
i. Plotted in inner variables, Fig. 6h shows that the peak position of
channel flow is much closer to the wall than the peak position of
TBL. Plotted in outer variables ðgpv ¼ ypv=dÞ, the TBL-data reach a
constant value above dþ � 400. Note that this is confirmed by four
independent experimental data sets (Bruns et al., 1992; Nockemann
et al., 1994; Carlier and Stanislas, 2005; Tsuji et al., 2007). Such a
strong difference is not visible in the yþpu- and the yþpw-distributions,
respectively Figs. 4 and 8i. A possible explanation is that hv2i is in-
deed strongly influenced by outer scales, which are different for
semi-confined and confined flows. Even stronger, while in the latter
the outer flow is only turbulent and the outer length scale can either
be imposed by the flow geometry and/or large-scale outer struc-
tures, the flow at the boundary layer edge is turbulent and intermit-
tent and the outer length scale can only be imposed by large-scale
outer structures. A similar idea was already expressed by Alfredsson
and Johansson (1984). More data in the range of 103

6 dþ 6 104 are
needed to answer this question more definitively.
3 The relation dþ ¼ 1:168� Re0:875
h was considered to employ the Fernholz–Finley

function.
4.4. Cross-flow Reynolds stress hw2i

Similar to the v-fluctuations, the wall behavior of the cross-flow
component can only be investigated employing DNS-data. None of
the experimental data from Table 1 reach sufficiently close to the
wall to be able to reliably predict dsc

1 . An exception is the experi-
ment by Durst et al. (1995) who gave for pipeflow with dþ ¼ 500
a dþ1 value of 0.21. This is well within the range found here in
Fig. 8a. In general, the coefficient dþ1 shows an asymptotic behavior
across the entire dþ range investigated. Employing standard mixed
(Fig. 8b) scaling may lead to a nearly constant value of d#

11, for
dþ > 1000. However, pure outer scaling (Fig. 8c) leads to the best re-
sult where a constant d�1 is already attained from dþ � 200 upward.

The first-order Taylor series expansion (Fig. 1d) works fine in a
region slightly larger than that for the v-fluctuations, but again
much smaller as compared to the region for the u-fluctuations.
The 3%-border is found around yþ � 0:2—0:3, as shown in Fig. 1d.

All peak values of hw2iþp order quite well along one curve, which
seems not to approach an asymptotical limit, as shown in Fig. 8d.
An exception is the high-Reynolds-number data set by Nockemann
et al. (1994). However, even these data confirm the finding by
Fernholz and Finley (1996) that hw2iþp rises from 2 for
Reh ¼ 670 ðdþ � 347Þ to about 3 for higher Reynolds numbers. Pri-
yadarshana et al. (2007) published a relation for hw2iþp based on
low-Reynolds-number laboratory data as well as data from high-
Reynolds-number atmospheric surface layer

hw2iþp ¼ 0:256 � logðRehÞ þ 0:742 ð23Þ
By slightly adjusting the additive constant from 0.742 to 0.6, a very
good agreement between (23) and the data is achieved above
dþ � 400, as shown in Fig. 8d. Standard mixed scaling (Fig. 8e)
works well and delivers a constant value hw2i#p1 for dþJ 800. Alter-
native mixed scaling seems not to be as effective (see Fig. 9). Obvi-
ously the influence of outer-velocity scales on the peak value of the
w-fluctuations is stronger than the one on the peak value of the u-
and v-fluctuations. As shown in Fig. 8f, outer scalings again fails to
approach an asymptotic state. None of the scaling types indicates
any significant distinction between CH- and TBL-data (see espe-
cially Fig. 9b).



Fig. 6. Reynolds normal stress component hv2i.
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Fernholz and Finley (1996) stated in their review that yþpw is a
function of Reh and ranges between 20 and 50. Due to the large
scatter of the data, however, the authors avoided plotting them.
For the same reason, Sreenivasan (1989) could not find a clear
trend. The CH and pipe flow DNS-data analyzed here show such
a trend, which is obviously similar as for yþpv .

yþpw ¼ 22:031 � dþ0:092 ð24Þ

The position of the peak yþpw is perspicuously closer to the wall than
yþpv but still much farther away as compared to yþup. Still, the exper-
imental TBL-data have a pronounced scatter so that no evidence can
be drawn from them (Fig. 8h). The scatter is less visible when plot-
ted in outer variables. Again, a linear decrease is found in the dou-
ble-log plot shown in Fig. 8i.

None of the representations of cross-flow fluctuation parame-
ters shows any significant differences between semi-confined
and confined flow.
5. Conclusions

A data base compiling a large number of results from direct
numerical simulations and physical experiments was used to ex-
plore the properties of shear and normal Reynolds stresses very
close to the wall of channel/pipe flows and boundary layers with
zero pressure gradient. Three types of scaling were investigated,
classical inner, standard mixed, and pure outer scaling. To qualify
the influence of outer scales more precisely, a new scaling called
alternative mixed scaling based on u3=2

s u1=2
e was introduced. All re-

sults are compiled in plots and summarized in Tables 3–5.
With respect to the four types of scaling, no conclusion in the

sense of And the winner is . . . can be drawn. That clearly indicates
that the different outer and inner scales of wall-bounded flows
act differently on the three fluctuations. For almost all parameters
investigated, classical inner scaling shows a clear dependence on
the Kármán number. The only exception from that finding is the



Fig. 7. Peak value of Reynolds normal stress component hv2i for alternative mixed scaling a ¼ 0:5.

Fig. 8. Reynolds normal stress component hw2i.
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peak position of hu2i. This parameter has a nearly constant value of
14.25–14.84 above dþ � 600. The Kármán number is the proper
independent variable because it deliberates the ratio of inner and
outer length scales. In certain cases, alternative mixed scaling is
superior to the standard mixed scaling based on usue, proposed
by DeGraaff and Eaton (2000).



Fig. 9. Peak value of Reynolds normal stress component hw2i for alternative mixed scaling a ¼ 0:5.
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In a personal communication, J. F. Morrison from Imperial Col-
lege London pointed out that in conformity with Newton’s second
law, accelerations or velocity differences (and not velocities) describe
the dynamical behavior because they are frame invariant. However,
the use of Reynolds decomposition invites us to consider velocity scales
for both the turbulence as well as the mean flow. The argumentum e
contrario is that the Reynolds decomposition is in principle not
suitable to describe the dynamical behavior of wall-bounded flows.
From that point of view, a triple decomposition for instantaneous
velocities and vorticities, as proposed by Hussain (1986), may be
more suitable to capture the dynamics of the flow. In any case,
we have to state that complete fluid mechanical similarity is con-
stituted by three components, namely geometrical, kinematical
and dynamical. Only if all three are satisfied for two different flows
would those flows be considered completely fluid-mechanically
similar. For example, this should be the case for the flow at two dif-
ferent streamwise positions of the same channel, but not for two
channels with different Reynolds numbers. Therefore, the present
study is basically a contest to capture kinematic similarity. To ob-
tain this partial similarity is a necessary but not sufficient condi-
tion to identify complete fluid mechanical similarity. A step
further may be found in studies that are based on essential features
of the turbulent flow such as energy transfer and related Kolmogo-
rov scales (Wagner et al., 2001; Stanislas et al., 2008; Buschmann
et al., in press).

The major results of the present study are as follows:

1. The first-order Taylor series expansions going back to Monin
and Yaglom (1971) work satisfactorily only in a very limited
region extremely close to the wall. Plotting the first-order coef-
ficients of these series employing classical inner scaling, it is
found that all of them show more or less an asymptotic depen-
dence on dþ. However, constant values are not reached below
dþ � 2000. For huvi employing standard mixed scaling, for
hu2i employing alternative mixed scaling, and for hv2i and
hw2i employing pure outer scaling, strengthening the depen-
dence on the outer-velocity scale leads to Kármán-number-
independent coefficients above dþ � 200.

2. Significant differences between confined and semi-confined
flows are found for the peak value of hu2i for low Kármán num-
ber, and the peak position of hv2i for Kármán numbers larger
than 200. However, number and quality of data are still too
low to draw firm conclusions with respect to hu2ip. Due to the
influence of pressure gradient on the wall-normal fluctuation
the later finding seems plausible. Differences between channel
and zero-pressure-gradient turbulent boundary layers were
also found for the peak value of Reynolds shear stress up to
dþ � 1000. Weak differences between the wall behaviors were
also discovered for Reynolds shear stress and wall-normal
stress.

3. Employing classical inner scaling shows that all peak values
increase with dþ. While the huvi- and the hv2i-peak distribu-
tions may reach an asymptotic state, the hu2i- and hw2i-peaks
increase non-asymptotically with Kármán number. While alter-
native mixed scaling leads to constant peak values for hu2i and
hv2i, standard mixed scaling does the same for hw2i. Pure outer
scaling fails in achieving constant peak values for all cases.

4. Scaled with classical inner variables, the peak positions of
huvi; hv2i and hw2i increase non-asymptotically. In all cases,
the dependence on dþ follows a power law but with different
coefficients. The peak position of hu2i is nearly constant.

5. Plotting the peak positions employing outer variables it is
found, that all distributions follow power laws in dþ. An
exception is the peak position of hv2i, which reach a constant
value for zero-pressure turbulent boundary layers above
d � 2000.

The study showed clear trends and tendencies. However, more
experimental data close to the wall and more DNS-results having
higher Reynolds numbers are urgently needed to complete the pic-
ture of turbulence closest to the wall.
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Durst, F., Jovanović, J., Sender, J., 1995. LDA measurements in the near-wall region of
a turbulent pipe flow. J. Fluid Mech. 295, 305–335.

Fischer, M., 1999. Turbulente wandgebundene Strömungen bei kleinen
Reynoldszahlen. Ph.D. Thesis, University Erlangen Nürnberg.

Fernholz, H.H., Finley, P.J., 1996. The incompressible zero-pressure-gradient
turbulent boundary layer: an assessment of the data. Prog. Aerospace Sci. 32,
245–311.

Gad-el-Hak, M., Bandyopadhyay, P.R., 1994. Reynolds number effects in wall-
bounded turbulent flow. Appl. Mech. Rev. 47, 307–364.

Gersten, K., Herwig, H., 1992. Strömungsmechanik Fundamentals and Advances in
the Engineering Science. Verlag Vieweg.

Hoyas, S., Jiménez, J., 2006. Scaling of velocity fluctuations in turbulent channels up
to Re ¼ 2000. Phys. Fluids 18, 011702.

Hoyas, S., Jiménez, J., 2005. Scaling of velocity fluctuations in turbulent channels up
to Re ¼ 2003. Center for Turbulence Research Annual Research Briefs. pp. 51–
356.

Hu, Z.W., Morfey, C.L., Sandham, N.D., 2006. Wall pressure and shear stress spectra
from direct simulations of channel flow. AIAA J. 44, 1541–1549.

Hussain, A.K.M.F., 1986. Coherent structures and turbulence. J. Fluid Mech. 173,
303–356.

Hutchins, N., Marusic, I., 2007. Evidence of very long meandering features in the
logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28.

Iwamoto, K., Suzuki, Y., Kasagi, N., 2002. Reynolds number effect on wall
turbulence: toward effective feedback control. J. Heat Fluid Flow 23, 678–689.

Jiménez, J., Hoyas, S., 2008. Turbulent fluctuations above the buffer layer in wall-
bounded flows. J. Fluid Mech. 611, 215–235.

Karlsson, R.I., Johansson, A.V., 1986. Measurement in a plane wall jet in a large
enclosure. In: Proc. Sixth Int. Symp. on LDA, Lisbon Portugal.

Khujadze, G., Oberlack, M., 2007. New scaling laws in ZPG turbulent boundary layer
flow. In: Fifth International Symposiumon Turbulence and Shear Flow
Phenomena, Munich Germany.

Kim, J., Moin, P., Moser, R., 1987. Turbulence statistics in a fully developed channel
flow at low Reynolds number. J. Fluid Mech. 177, 133–166.

Klewicki, J.C., Murray, J.A., Falco, R.E., 1994. Vortical motion contributions to stress
transport in turbulent boundary layer. Phys. Fluids 6, 277–286.

Laadhari, F., 2002. On the evolution of maximum turbulent kinetic energy
production in a channel flow. Phys. Fluids 14, L65–L68.

Ligrani, P.M., Bradshaw, P., 1987. Spatial resolution and measurement of turbulence
in the viscous sublayer using subminiature hot-wire probes. Exp. Fluid 5, 407–
417.

Long, R.R., Chen, T.-C., 1981. Experimental evidence for the existence of the
‘mesolayer’ in turbulent systems. J. Fluid Mech. 105, 19–59.

Marusic, I., Kunkel, G.J., 2003. Streamwise turbulence intensity for flat-plate
boundary layers. Phys. Fluids 15, 2461–2464.

McKeon, B.J., Li, J., Jiang, W., Morrison, J.F., Smits, A.J., 2004. Further observations on
the mean velocity distribution in fully developed pipe flow. J. Fluid Mech. 501,
135–147.

Metzger, M.M., Klewicki, J.C., 2001. A comparative study of near-wall turbulence in
high and low Reynolds number boundary layer. Phys. Fluids 13, 692–
701.

Metzger, M.M., 2006. Length and time scales of the near-surface axial velocity in a
high Reynolds number turbulent boundary layer. Heat Fluid Flow 27, 534–
541.
Mochizuki, S., Nieuwstadt, F.T.M., 1996. Reynolds-number-dependence of the
maximum in the streamwise velocity fluctuations in wall turbulence. Exp.
Fluids 21, 218–226.

Monin, A.S., Yaglom, Y.M., 1971. Statistical fluid mechanics: mechanics of
turbulence. In: Lumley, J.L. (Ed.), English Translation, vol. 2. MIT Press,
Cambridge, Massachusetts.

Morrison, J.F., 2009. Private communication.
Morrison, J.F., 2007. The interaction between inner and outer regions of turbulent

wall-bounded flow. Philos. Trans. R. Soc. A 365, 683–698.
Morrison, J.F., McKeon, B.J., Jiang, W., Smits, A.J., 2004. Scaling of the streamwise

velocity component in turbulent pipe flow. J. Fluid Mech. 508, 99–131.
Moser, R.D., Kim, J., Mansour, N.N., 1999. Direct numerical simulation of turbulent

channel flow up to Res ¼ 590. Phys. Fluids 4, 943–945.
Nagano, Y., Tagawa, M., Tsuji, T., 1992. Effects on adverse pressure gradient on mean

flow and turbulence statistics in a boundary layer. In: Durst, F., Friedrich, R.,
Launder, B.E., Schmidt, F.W., Schuhmann, U., Whitelaw, J.H. (Eds.), Turbulent
Shear Flow, vol. 8. Springer, Berlin, pp. 7–21.

Nickels, T.B., Marusic, I., Hafez, S., Hutchins, N., Chong, M.S., 2007. Some predictions
of the attached eddy model for a high Reynolds number boundary layer. Philos.
Trans. R. Soc. A 365, 807–822.

Nockemann, M., Abstiens, R., Schober, M., Bruns, J., Eckert, D., 1994. Messungen in
einer turbulenten Wandgrenzschicht bei grossen Reynolds-Zahlen im Deutsch-
Niederländischen Windkanal Messbericht. In: Krause, E. (Eds.), Abhandlungen
aus dem Aerodynamischen Institut der RWTH Aachen.

Osaka, H., Kameda, T., Mochizuki, S., 1998. Re-examination of the Reynolds number
effect on the mean flow quantities in a smooth wall turbulent boundary layer.
JSME Int. J. 41, 123–129.

Panton, R., 2007. Composite expansion of active and inactive motions of the
streamwise Reynolds stress. In: 5th Int. Sym. Turbulence and Shear Flow
Phenomena München Germany. pp. 437–441.

Priyadarshana, P.J.A., Klewicki, J.C., 2004. Study of the motions contributing to the
Reynolds stress in high and low Reynolds number turbulent boundary layers.
Phys. Fluids 16, 4586–4600.

Priyadarshana, P.J.A., Klewicki, J.C., Treat, S., Foss, J.F., 2007. Statistical structure of
turbulent-boundary layer velocity–vorticity products at high and low Reynolds
number. J. Fluid Mech. 570, 307–346.

Purtell, P., Klebanoff, P., Buckley, F., 1981. Turbulent boundary layer at low Reynolds
number. Phys. Fluids 24, 802–811.

Rao, K.N., Narasimha, R., Badri Narayanan, M.A., 1971. The ‘bursting’ phenomenon
in a turbulent boundary layer. J. Fluid Mech. 48, 339–352.

Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V.,
Alfredsson, P.H., Henningson, D.S., 2009. Turbulent boundary layers up to
Reh ¼ 2500 studied through simulation and experiment. Phys. Fluids 21,
051702.

Spalart, P., 1988. Direct simulation of turbulent boundary layer up to Reh ¼ 1410. J.
Fluid Mech. 187, 61–98.

Sreenivasan, K.R., 1989. The turbulent boundary layer. In: Gad-el-Hak, M. (Ed.),
Frontiers in Experimental Fluid Mechanics. Springer-Verlag.

Sreenivasan, K.R., Sahay, A., 1997. The persistence of viscous effects in the overlap
region, and the mean velocity in turbulent pipe and channel flows. In: Panton, R.
(Ed.), Self-Sustaining Mechanisms of Wall Turbulence. Computational
Mechanics Publications, Southampton, United Kingdom.

Stanislas, M., Perret, L., Foucaut, J.-M., 2008. Vortical structures in the turbulent
boundary layer: a possible route to a universal representation. J. Fluid Mech.
602, 327–382.

Townsend, A.A., 1976. The Structure of Turbulent Shear Flow. Cambridge University
Press.

Tsuji, Y., Fransson, J.H.M., Alfredsson, P.H., Johansson, A.V., 2007. Pressure statistics
and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid
Mech. 585, 1–40.

Tsukahara, T., Seki, Y., Kawamura, H., Tochio, D., 2002. DNS of turbulent channel
flow at very low Reynolds numbers. In: Proc. Fourth Int. Symp. Turbulence and
Shear Flow Phenomena, Williamsburg, USA, pp. 935–940.

Ueda, H., Hinze, J.O., 1975. Fine-structure turbulence in the wall region of a
turbulent boundary layer. J. Fluid Mech. 67, 125–143.

Wagner, C., Hüttel, T.J., Friedrich, R., 2001. Low-Reynolds-number effects derived
from direct numerical simulations of turbulent pipe flow. Comput. Fluids 30,
581–590.

Wu, X., Moin, P., 2008. A direct numerical simulation on the mean velocity
characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81–112.

Zanoun, E.-S., 2003. Answers to some open questions in wall-bounded laminar and
turbulent shear flows. Ph.D. Thesis, University Erlangen Nürnberg.


	Near-wall behavior of turbulent wall-bounded flows
	Motivation
	Data base
	Organization of results
	Classical and mixed scaling
	Reynolds shear stress  \langle {\bf{uv}} \rangle 
	Longitudinal Reynolds stress  \langle {{\bf{u}}}^{{\bf{2}}} \rangle 
	Wall-normal Reynolds stress  \langle {\gulliverbv}^{{\bf{2}}} \rangle 
	Cross-flow Reynolds stress  \langle {{\bf{w}}}^{{\bf{2}}} \rangle 

	Conclusions
	Acknowledgement
	References


